Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Water Res ; 241: 120098, 2023 Aug 01.
Article in English | MEDLINE | ID: covidwho-2328161

ABSTRACT

(MOTIVATION): Wastewater-based epidemiology (WBE) has emerged as a promising approach for monitoring the COVID-19 pandemic, since the measurement process is cost-effective and is exposed to fewer potential errors compared to other indicators like hospitalization data or the number of detected cases. Consequently, WBE was gradually becoming a key tool for epidemic surveillance and often the most reliable data source, as the intensity of clinical testing for COVID-19 drastically decreased by the third year of the pandemic. Recent results suggests that the model-based fusion of wastewater measurements with clinical data and other indicators is essential in future epidemic surveillance. (METHOD): In this work, we developed a wastewater-based compartmental epidemic model with a two-phase vaccination dynamics and immune evasion. We proposed a multi-step optimization-based data assimilation method for epidemic state reconstruction, parameter estimation, and prediction. The computations make use of the measured viral load in wastewater, the available clinical data (hospital occupancy, delivered vaccine doses, and deaths), the stringency index of the official social distancing rules, and other measures. The current state assessment and the estimation of the current transmission rate and immunity loss allow a plausible prediction of the future progression of the pandemic. (RESULTS): Qualitative and quantitative evaluations revealed that the contribution of wastewater data in our computational epidemiological framework makes predictions more reliable. Predictions suggest that at least half of the Hungarian population has lost immunity during the epidemic outbreak caused by the BA.1 and BA.2 subvariants of Omicron in the first half of 2022. We obtained a similar result for the outbreaks caused by the subvariant BA.5 in the second half of 2022. (APPLICABILITY): The proposed approach has been used to support COVID management in Hungary and could be customized for other countries as well.


Subject(s)
COVID-19 , Wastewater , Humans , Hungary/epidemiology , Pandemics , COVID-19 Testing , Immune Evasion , COVID-19/epidemiology , Disease Outbreaks
2.
PLoS Comput Biol ; 18(1): e1009693, 2022 01.
Article in English | MEDLINE | ID: covidwho-1607433

ABSTRACT

Pandemic management requires reliable and efficient dynamical simulation to predict and control disease spreading. The COVID-19 (SARS-CoV-2) pandemic is mitigated by several non-pharmaceutical interventions, but it is hard to predict which of these are the most effective for a given population. We developed the computationally effective and scalable, agent-based microsimulation framework PanSim, allowing us to test control measures in multiple infection waves caused by the spread of a new virus variant in a city-sized societal environment using a unified framework fitted to realistic data. We show that vaccination strategies prioritising occupational risk groups minimise the number of infections but allow higher mortality while prioritising vulnerable groups minimises mortality but implies an increased infection rate. We also found that intensive vaccination along with non-pharmaceutical interventions can substantially suppress the spread of the virus, while low levels of vaccination, premature reopening may easily revert the epidemic to an uncontrolled state. Our analysis highlights that while vaccination protects the elderly from COVID-19, a large percentage of children will contract the virus, and we also show the benefits and limitations of various quarantine and testing scenarios. The uniquely detailed spatio-temporal resolution of PanSim allows the design and testing of complex, specifically targeted interventions with a large number of agents under dynamically changing conditions.


Subject(s)
COVID-19/therapy , Models, Theoretical , Adolescent , Adult , Aged , Algorithms , COVID-19/epidemiology , COVID-19/virology , Child , Humans , Middle Aged , Pandemics , Quarantine , SARS-CoV-2/isolation & purification , Young Adult
3.
Nonlinear Dyn ; 102(4): 1965-1986, 2020.
Article in English | MEDLINE | ID: covidwho-962152

ABSTRACT

The management of COVID-19 appears to be a long-term challenge, even in countries that have managed to suppress the epidemic after their initial outbreak. In this paper, we propose a model predictive approach for the constrained control of a nonlinear compartmental model that captures the key dynamical properties of COVID-19. The control design uses the discrete-time version of the epidemic model, and it is able to handle complex, possibly time-dependent constraints, logical relations between model variables and multiple predefined discrete levels of interventions. A state observer is also constructed for the computation of non-measured variables from the number of hospitalized patients. Five control scenarios with different cost functions and constraints are studied through numerical simulations, including an output feedback configuration with uncertain parameters. It is visible from the results that, depending on the cost function associated with different policy aims, the obtained controls correspond to mitigation and suppression strategies, and the constructed control inputs are similar to real-life government responses. The results also clearly show the key importance of early intervention, the continuous tracking of the susceptible population and that of future work in determining the true costs of restrictive control measures and their quantitative effects.

SELECTION OF CITATIONS
SEARCH DETAIL